1,934 zoekresultaten voor “machine learning” in de Publieke website
-
Machine Learning
Computers zijn in staat om ongelooflijk nauwkeurige voorspellingen te doen op basis van machine learning. Met andere woorden, deze computers kunnen zonder tussenkomst leren als ze eenmaal door mensen zijn voorgeprogrammeerd. Bij LIACS verkennen en verleggen we de grenzen van wat een revolutionaire nieuwe…
-
Massively collaborative machine learning
Promotor: J. N. Kok, Co-promotor: A. J. Knobbe
-
Kunstmatige intelligentie en machine learning
Computers zijn in staat om ongelooflijk nauwkeurige voorspellingen te doen op basis van machine learning. Met andere woorden, deze computers kunnen zonder tussenkomst leren als ze eenmaal door mensen zijn voorgeprogrammeerd. Bij LIACS verkennen en verleggen we de grenzen van wat een revolutionaire nieuwe…
-
Computational speedups and learning separations in quantum machine learning
This thesis investigates the contribution of quantum computers to machine learning, a field called Quantum Machine Learning. Quantum Machine Learning promises innovative perspectives and methods for solving complex problems in machine learning, leveraging the unique capabilities of quantum computers…
-
Machine learning for radio galaxy morphology analysis
We explored how to morphologically classify well-resolved jetted radio-loud active galactic nuclei (RLAGN) in the LOw Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) using machine learning.
-
Machine learning and computer vision for urban drainage inspections
Sewer pipes are an essential infrastructure in modern society and their proper operation is important for public health. To keep sewer pipes operational as much as possible, periodical inspections for defects are performed.
-
Reliable and Fair Machine Learning for Risk Assessment
The focus of this thesis is on the technical methods which help promote the movement towards Trustworthy AI, specifically within the Inspectorate of the Netherlands.
-
Automated machine learning for dynamic energy management using time-series data
Time-series forecasting through modelling sequences of temporally dependent observations has many industrial and scientific applications. While machine learning models have been widely used to create time-series forecasting models, creating efficient and performant time-series forecasting models is…
-
of post-translationally modified peptides in Streptomyces with machine learning
The ongoing increase in antimicrobial resistance combined with the low discovery of novel antibiotics is a serious threat to our health care.
-
Data-Driven Machine Learning and Optimization Pipelines for Real- World Applications
Machine Learning is becoming a more and more substantial technology for industry.
-
Information-theoretic partition-based models for interpretable machine learning
In this dissertation, we study partition-based models that can be used both for interpretable predictive modeling and for understanding data via interpretable patterns.
-
Quantum machine learning: on the design, trainability and noise-robustness of near-term algorithms
This thesis addresses questions on effectively using variational quantum circuits for machine learning tasks.
-
Machine learning-based NO2 estimation from seagoing ships using TROPOMI/S5P satellite data
The marine shipping industry is one of the strongest emitters of nitrogen oxides (NOx), a pollutant detrimental to ecology and human health. Over the last 20 years, the pollution produced by power plants, the industry sector, and cars has been decreasing.
-
The flux and flow of data: connecting large datasets with machine learning in a drug discovery envirionment
This thesis focuses on data found in the field of computational drug discovery. New insight can be obtained by applying machine learning in various ways and in a variety of domains. Two studies delved into the application of proteochemometrics (PCM), a machine learning technique that can be used to…
-
Machine learning voorspelt voorkeuren
Cláudio de Sá voorspelt voorkeuren van mensen door gebruik te maken van ranglijsten. Dit doet hij door ‘klassieke’ machine learning-technieken aan te passen. Zijn werk kan onder andere gebruikt worden om de uitslagen van verkiezingen te voorspellen. Promotie op 16 december.
-
PNAS Paperprijs voor quantum machine learning
‘We hopen dat ons artikel de mogelijkheden en voordelen laat zien van het gebruik van kunstmatige intelligentie in de quantumfysica om nieuwe ontdekkingen te doen.’ Vedran Dunjko van het Leiden Institute of Advanced Computer Science droeg bij aan een artikel dat vorig jaar verscheen in PNAS. Het artikel…
-
Novel system-inspired model-based quantum machine learning algorithm for prediction and generation of High-Energy Physics data
De huidige en toekomstige quantumcomputers vormen dezelfde uitdaging als de laser in zijn begindagen. In theorie werd voorspeld dat de laser een bron van zeer speciaal, zeer krachtig licht zou zijn. Maar in die tijd waren er geen duidelijke toepassingen voor. Critici van het idee noemden het een probleem…
-
Optimally weighted ensembles of surrogate models for sequential parameter optimization
It is a common technique in global optimization with expensive black-box functions to learn a surrogate-model of the response function from past evaluations and use it to decide on the location of future evaluations.
-
Learning from small samples
Learning from small data sets in machine learning is a crucial challenge, especially when dealing with data imbalances and anomaly detection. This thesis delves into the challenges and methodologies of learning from small datasets in machine learning, with a particular focus on addressing data imbalances…
-
Modelling the interactions of advanced micro- and nanoparticles with novel entities
Novel entities may pose risks to humans and the environment. The small particle size and relatively large surface area of micro- and nanoparticles (MNPs) make them capable of adsorbing other novel entities, leading to the formation of aggregated contamination.
-
Het BIAS-project op de Applied Machine Learning Days in Lausanne, Zwitserland
De Applied Machine Learning Days (AMLD) is een wereldwijd platform dat experts en deelnemers uit meer dan 40 landen samenbrengt uit industrie, academie en overheid op het gebied van machine learning. In de editie van dit jaar organiseerden leden van het BIAS-project een track rond het onderwerp 'Eerlijkheid…
-
Alumnus Robert Ietswaart: 'Machine learning leidt tot een revolutie in de medicijnontwikkeling'
Robert Ietswaart doet bij de befaamde Harvard Medical School in Boston onderzoek naar humane genregulatie. Hij ontwikkelde een machine learning-algoritme om beter te kunnen voorspellen of een kandidaatmedicijn bijwerkingen kan gaan vertonen. Ietswaart studeerde wiskunde en natuurkunde in Leiden, en…
-
Exploring big data approaches in the context of early stage clinical
Als gevolg van de grote technologische vooruitgang in de gezondheidszorg worden in toenemende mate gegevens verzameld tijdens de uitvoering van klinische onderzoeken.
-
Network analysis methods for smart inspection in the transport domain
Transport inspectorates are looking for novel methods to identify dangerous behavior, ultimately to reduce risks associated to the movements of people and goods. We explore a data-driven approach to arrive at smart inspections of vehicles.
-
Data-driven donation strategies: understanding and predicting blood donor deferral
The research in this dissertation aims to optimise blood donation processes in the framework of the Dutch national blood bank Sanquin. The primary health risk for blood donors is iron deficiency, which is evaluated based on donors' hemoglobin and ferritin levels.
-
Algorithm selection and configuration for Noisy Intermediate Scale Quantum methods for industrial applications
Quantum hardware comes with a different computing paradigm and new ways to tackle applications. Much effort has to be put into understanding how to leverage this technology to give real-world advantages in areas of interest for industries such as combinatorial optimization or machine learning.
-
Bayesian learning: challenges, limitations and pragmatics
This dissertation is about Bayesian learning from data. How can humans and computers learn from data?
-
Data-Driven Risk Assessment in Infrastructure Networks
Leiden University and the Ministry of Infrastructure and Water Management are involved in a collaboration in the form of a research project titled 'Data-Driven Risk Assessment in Infrastructure Networks'
-
Numerical exploration of statistical physics
In this thesis, we examine various systems through the lens of several numerical methods.
-
Frans Rodenburg
Wiskunde en Natuurwetenschappen
f.j.rodenburg@biology.leidenuniv.nl | +31 71 527 2727
-
Exploring Images With Deep Learning for Classification, Retrieval and Synthesis
In 2018, the number of mobile phone users will reach about 4.9 billion. Assuming an average of 5 photos taken per day using the built-in cameras would result in about 9 trillion photos annually.
-
Spectral imaging and tomographic reconstruction methods for industrial applications
Radiography is an important technique to inspect objects, with applications in airports and hospitals. X-ray imaging is also essential in industry, for instance in food safety checks for the presence of foreign objects.
-
Model-assisted robust optimization for continuous black-box problems
Uncertainty and noise are frequently-encountered obstacles in real-world applications of numerical optimization. The practice of optimization that deals with uncertainties and noise is commonly referred to as robust optimization.
-
Data-driven Predictive Maintenance and Time-Series Applications
Predictive maintenance (PdM) is a maintenance policy that uses the past, current, and prognosticated health condition of an asset to predict when timely maintenance should occur.
-
Wouter van Loon
Faculteit der Sociale Wetenschappen
w.s.van.loon@fsw.leidenuniv.nl | +31 71 527 2727
-
Methods and Tools for Mining Multivariate Time Series
Mining time series is a machine learning subfield that focuses on a particular data structure, where variables are measured over (short or long) periods of time.
-
Robust rules for prediction and description.
In this work, we attempt to answer the question:
-
Quantum machine learning
Promotie
-
Grip on software: understanding development progress of SCRUM sprints and backlogs
Software development is a complex process. It is important that software products become stable and maintainable assets.
-
Kunstgebitten, machines en stof
Over onorthodoxe uitingen van wetenschap.
-
Using cryo-EM methods to uncover structure and function of bacteriophages
Bacteriophages, or phages for short, are the most abundant biological entity in nature. They shape bacterial communities and are a major driving force in bacterial evolution.
-
Deep learning for visual understanding
With the dramatic growth of the image data on the web, there is an increasing demand of the algorithms capable of understanding the visual information automatically.
-
Understanding deep meta-learning
The invention of neural networks marks a critical milestone in the pursuit of true artificial intelligence. Despite their impressive performance on various tasks, these networks face limitations in learning efficiently as they are often trained from scratch.
-
Philipp Kropf
Wiskunde en Natuurwetenschappen
p.kropf@cml.leidenuniv.nl | +31 71 527 2727
-
I-Fan Lin
Wiskunde en Natuurwetenschappen
i.lin@liacs.leidenuniv.nl | +31 71 527 2727
-
Tom Kouwenhoven
Wiskunde en Natuurwetenschappen
t.kouwenhoven@liacs.leidenuniv.nl | +31 71 527 4799
-
Fatemeh Mehrafrooz Mayvan
Wiskunde en Natuurwetenschappen
f.mehrafrooz.mayvan@liacs.leidenuniv.nl | +31 71 527 2727
-
Chenyu Shi
Wiskunde en Natuurwetenschappen
c.shi@liacs.leidenuniv.nl | +31 71 527 2727
-
Simon Marshall
Wiskunde en Natuurwetenschappen
s.c.marshall@liacs.leidenuniv.nl | +31 71 527 2727
-
Anna Dawid-Lekowska
Wiskunde en Natuurwetenschappen
a.m.dawid@liacs.leidenuniv.nl | +31 71 527 2727